<u>Topic 11 – Periodicity</u> <u>Revision Notes</u>

1) <u>Trends across period 3</u>

- Across period 3, nuclear charge increases and shielding remains constant
- There is increased attraction between the nucleus and the outer shell electrons so atomic radius decreases, first ionisation energy increases (apart from dips to Al and S)
- When covalently bonded, there is increased attraction between the nucleus and the shared pair electrons so electronegativity increases
- Na, Mg and Al have metallic bonding. Si is giant covalent. P₄, S₈ and Cl₂ are simple molecular. Ar is simple atomic

2) <u>Reactions of period 3 elements</u>

Equation	Observations	Redox
$2Na(s) + 2H_2O(l) \square 2NaOH(aq) + H_2(g)$	Effervescence	Na from 0 to +1, oxidation
	Yellow flame	H from +1 to 0, reduction
$Mg(s) + 2H_2O(I) \Box Mg(OH)_2(aq) + H_2(g)$	Fine bubbles	Mg from 0 to $+2$, oxidation
	Slow reaction	H from +1 to 0, reduction

a) Reactions of Period 3 elements with water

• Magnesium reacts rapidly with steam

$Mg(s) + H_2O(g) \Box MgO(s) + H_2(g)$

b) Reactions of Period 3 elements with oxygen

Equation	Observations	Redox
$4Na(s) + O_2(g) \square 2Na_2O(s)$	White solid produced	Na from 0 to +1, oxidation
	-	O from 0 to -2, reduction
$2Mg(s) + O_2(g) \square 2MgO(s)$	Bright white flame	Mg from 0 to +2, oxidation
	White solid produced	O from 0 to -2, reduction
$4AI(s) + 3O_2(g) \Box 2AI_2O_3(s)$	White solid produced	Al from 0 to +3, oxidation
		O from 0 to -2, reduction
$Si(s) + O_2(g) \square SiO_2(s)$		Si from 0 to +4, oxidation
		O from 0 to -2, reduction
$P_4(s) + 5O_2(g) \Box P_4O_{10}(s)$		P from 0 to +5, oxidation
		O from 0 to -2, reduction
$S(s) + O_2(g) \square SO_2(g)$	Blue flame	S from 0 to +4, oxidation
	Pungent/choking gas	O from 0 to -2, reduction
	produced	

3) <u>Reactions of Period 3 oxides</u>

a) Structure and bonding of oxides

- Na₂O, MgO are giant ionic high melting and boiling points due to strong attraction between oppositely charged ions
- Al₂O₃ is ionic with covalent character high melting and boiling points due to strong attraction between oppositely charged ions
- SiO₂ is giant covalent very high melting and boiling points as there are many strong covalent bonds to break
- P₄O₁₀ and SO₃ are simple molecular low melting and boiling points due to weak VdW forces between molecules

b) Reactions with water

Equation	Observations	Notes
$Na_2O(s) + H_2O(l) \square 2NaOH(aq)$	Dissolves readily	Alkaline solution, pH 14
		Oxide ions react with
		water to form OH ⁻
$MgO(s) + H_2O(I) \square Mg(OH)_2(aq)$	Sparingly soluble	Alkaline solution, pH 10
		Oxide ions react with
		water to form OH ⁻
$AI_2O_3(s) + H_2O(I) \square$ No reaction	Al ₂ O ₃ doesn't dissolve	Al ₂ O ₃ is amphoteric
	Lattice enthalpy is too	
	high	
$SiO_2(s) + H_2O(l) \square$ No reaction		
$P_4O_{10}(s) + 6H_2O(l) \Box 4H_3PO_4(aq)$		Acidic solution, pH 0
$SO_2(g) + H_2O(I) \square H_2SO_3(aq)$		Acidic solution, pH 3
$SO_3(g) + H_2O(I) \square H_2SO_4(aq)$		Acidic solution, pH 0

- Giant ionic oxides produce alkaline solutions
- Al₂O₃ and SiO₂ are insoluble
- Simple molecular oxides produce acidic solutions
- The trend across the Period is from ionic to covalent oxides and from alkaline to acidic solutions

c) Reactions with acids and bases

• Alkaline oxides react with acids e.g.

This would also apply to amphoteric AI_2O_3 when acting as a base

• Acidic oxides react with bases e.g.

```
\begin{array}{ll} P_4O_{10} + \ 12NaOH \ \square \ 4Na_3PO_4 + \ 6H_2O & (ionic \ version \ omits \\ Na^+) \\ SiO_2 + CaO \ \square \ CaSiO_3 & (ionic \ version \ omits \ Ca^{2+}) \end{array}
```

• (Amphoteric) aluminium oxide reacting as an acid

 $AI_2O_3 + 2OH^- + 3H_2O \square 2[AI(OH)_4]^-$